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Abstract— Atrial fibrillation (AF) is the most common 

cardiac arrhythmia and is associated with an increased risk of 

stroke and mortality. Research into the prediction of AF onset 

has been motivated by the necessity to develop better pacing 

therapy to reduce the incidence of AF and maintain the heart’s 

normal sinus rhythm. In this paper, we address a similar 

problem to that posed in the Computers in Cardiology 

Challenge 2001, but develop patient specific models to 

distinguish between epochs of ECG located far away from AF 

rhythms and those located just prior to the onset of those 

episodes. Our approach is validated using a publicly available 

dataset.  

I. INTRODUCTION 

Atrial fibrillation (AF) is a condition where the heart is 
unable to contract effectively and is the most common type of 
cardiac arrhythmia. It is associated with an increased risk of 
embolic stroke and affects more than 2.2 million people in 
the United States [1][2]. AF may be classified as paroxysmal, 
persistent or permanent based on the duration of the 
fibrillatory rhythms. In the paroxysmal case, intermittent AF 
episodes that terminate on their own occur and put patients at 
risk of being undiagnosed with the arrhythmia.  

The Computers in Cardiology Challenge 2001 was 
created to encourage research into predicting the onset of AF 
[3]. One of the underlying clinical objectives was to help 
develop technology that could possibly stabilize a patient’s 
normal sinus rhythm and prevent the onset of an AF episode 
with different pacing mechanisms. The competition 
comprised of two parts. The first part of the challenge was to 
diagnose the incidence of AF by developing classification 
techniques to distinguish between 30-minute ECGs of 
patients who had the arrhythmia and those who did not. The 
second part was to predict the onset of paroxysmal AF. Given 
pairs of 30-minute ECGs recorded from the same patient, the 
problem was to identify which of the two occurred just prior 
to the commencement AF and which one was from further 
away. The challenge has since been revisited by others in 
order to improve the accuracy of some of the original entries 
submitted to the contest.  

Our research group is developing a novel 
vectorcardiogram monitoring device [4] for long-term signal 
acquisition. The device has the ability to compensate for 
errors induced when placed incorrectly on a patient’s chest 
and will feature wireless connectivity to a user’s smartphone. 
Accumulating continuous heart signal recordings will better 
equip healthcare providers to monitor patients remotely, help 
them avoid unnecessary hospital visits and also opens up the 
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possibility of developing algorithms tailored to each patient 
(i.e., personalized) to predict impending cardiac events. For 
instance, Lindsberg et al. [5] point out the necessity of long-
term monitoring for diagnosing infrequent paroxysmal AF, 
and the need for automated event detection especially if 
episodes are asymptomatic. In this paper, we present a patient 
specific approach to predict the occurrence of impending 
episodes of AF, similar to the problem posed in the second 
part of the Computers in Cardiology Challenge 2001, and 
validate it using a publicly available dataset.  

II. LITERATURE REVIEW 

 In this section we review some of the literature 

describing entries to the Computers in Cardiology Challenge 

2001 to predict the onset of AF. There were 28 pairs of 

ECGs in the test set and scores were calculated as a 

percentage of the number of correctly classified pairs. Lynn 

and Chiang [6] used state-space domain features of heart rate 

variability (HRV). They classified return and difference 

maps using k-nearest neighbors and scored 64% in 

predicting AF onset. Zong et al. [7] used the number of 

isolated premature atrial complexes (PACs) appearing in 

ECGs modified with a weight to favor complexes that had 

most recently occurred to predict AF episodes. Their rule-

based classifier scored 79%. Langley et al. [8] extracted 

features based on the frequency of ectopic beat occurrence in 

RR-intervals. A moving average of the RR-intervals was 

maintained and an ectopic beat was flagged if an interval 

under consideration was less than 20% of the average. They 

predicted the onset of AF by counting the number of atrial 

and ventricular ectopic beats and obtained a score of 61%. 

Schreier et al. [9] applied beat classification to the ECG 

signals and extracted regular and premature heartbeats. They 

calculated the correlation between a representative template 

of the p-wave in either group with those extracted from test 

signals. Diagnosis was performed using a statistical test and 

they scored 71% in the prediction problem where a weighted 

measure of the correlation coefficients was used. De Chazal 

and Heneghan [10] developed a number of features and used 

Linear Discriminant Analysis for classification. The types of 

features they used included time and frequency domain 

features of RR-intervals, features extracted from p-wave 

amplitudes and the frequency content of p-waves. Their 

proposed method received 68% on the prediction challenge. 

Maier et al. [11] used features extracted from RR-intervals 

and the number of ectopic beats and evaluated different 

classification approaches. Their entries to the contest 

received a score of 68%. 

Thong et al. [12] revisited the original challenge and 

proposed a predictor based on the number of PACs not 
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followed by a regular RR-interval, the occurrence of atrial 

bigeminy and trigeminy rhythms and the appearance of short 

durations of paroxysmal atrial tachycardia. Their rule-based 

system scored 89% outperforming [7] that had scored 

highest in the 2001 contest. It must be noted that these 

authors and subsequent researchers had access to additional 

data that the original competitors did not. More recently, 

Hilavin and Kuntalp [13] used complex correlation measures 

of HRV and obtained a score of 72% on the same dataset. 

Chesnokov et al. [14] trained a neural network to distinguish 

between distant and pre-AF records using the power spectral 

density of HRV signals and obtained a sensitivity of 72.7% 

on test data. Arotaritei and Rotariu [15] considered the 

appearance of successive PACs, the Teager entropy and root 

mean square of successive differences in RR-intervals and 

achieved a sensitivity of 52%. 

In a study of Holter recordings seeking to determine if 

paroxysmal AF had a common mode of initiation in all 

patients, Hnatkova et al. [16] concluded that there was no 

consistent mode of AF onset across a population having the 

arrhythmia and even within an individual. They claim that 

“there is marked variation in the rate and rhythm before 

onset not only between patients, but also between episodes 

of AF in an individual patient, and no clearly identifiable 

pattern was seen.” Their conclusions caused us to seek to 

develop patient specific classification models instead of 

global classifiers that could predict AF onset for everyone. 

III. METHODOLOGY 

A.  Data 

The Long-Term Atrial Fibrillation Database (LTAFDB) 
from PhysioBank [17][18] contains 84 ECG recordings from 
patients with sustained or paroxysmal AF. Each recording is 
approximately 24 hours in duration and contains two ECG 
signals recorded at a sampling frequency of 256 Hz. For the 
purpose of this research we needed to distinguish ECGs that 
occurred shortly before the commencement of episodes of AF 
from ECG signals that were sufficiently far away from such 
abnormal rhythms. We randomly selected 100 ECG epochs, 
each being 2 minutes in duration, from every record, located 
at least 10 minutes away from an AF rhythm and labeled this 
collection of ECGs as the normal or distant set. Thereafter, 
we selected ECG epochs of identical duration from the same 
records but which terminate 0, 1, 2 and 3 minutes 
respectively, prior to the start of each episode of AF and 
labeled it as the pre-atrial fibrillation (pre-AF) set. If an 
epoch contains another AF episode it is discarded. We only 
selected recordings containing at least 20 episodes of AF in 
order to have enough data for both classes to train patient 
specific models. 

B. Feature Extraction 

  Several of the original entries in the 2001 contest 
utilized features based on HRV and we used beat annotations 
provided in the LTAFDB to extract RR-interval time series 
for the ECGs. A cubic spline interpolated trend line was 
subtracted from these series to center them about zero. We 
manually inspected the RR-interval data to identify good 
features that were correlated with the target class. We chose 
eight statistics to characterize variations in heart rate during 

each 2-minute interval. After normalizing the data by 
dividing by the maximum absolute value, outliers were 
defined as the points greater than three standard deviations 
away from zero. The number of outliers along with their 
maximum, minimum, mean and median were the first five 
statistics. The median and root mean square value of the 
series without the outliers were also extracted. The final 
statistic was the number of data points in the series that is 
equivalent to the number of heartbeats during the epoch. 

Autoregressive (AR) modelling has been used previously 
in ECG signal classification during AF [19] and we also 
extracted four AR coefficients to capture the variation within 
the RR-interval time series. 

Annotations accompanying the original ECG signals 
indicate locations where abnormal beats and abnormal 
rhythm changes occurred. The most frequently appearing 
abnormal beat types include PACs and premature ventricular 
contractions while sinus bradycardia, ventricular tachycardia, 
atrial bigeminy, supraventricular tachycardia and ventricular 
bigeminy are among some of the abnormally occurring 

 
Figure 1. Feature Distribution of distant and pre-AF data points for 

patient/record 33 for 0-minute prediction horizon 

 

 
Figure 2. Feature distribution of distant and pre-AF data points for 

patient/record 51 for 1-minute prediction horizon 

 



  

TABLE 1. SPECIFICITY (SPEC.), SENSITIVITY (SENS.) AND ACCURACY (ACC.) OF CLASSIFICATION BETWEEN DISTANT AND PRE-

ATRIAL FIBRILLATION ECGS FOR EACH PATIENT/RECORD FOR DIFFERENT PREDICTION HORIZONS 

 

rhythms. The number of these individual types of beats and 
rhythms occurring in each epoch were also incorporated into 
the features. When concatenated, all of the above attributes 
form a feature vector with 27 values corresponding to each 2-
minute ECG.  

B. Feature Selection 

A Mann-Whitney ranksum test [20] was used to select the 
best features that distinguish between the distant class and the 
subset of ECGs belonging to the pre-AF class which 
terminate right at the commencement of an episode (i.e., 0 
minutes before the onset of fibrillatory rhythm) for each 
patient. The test indicates whether the particular feature being 
considered is distributed with different medians for each 
class. Features for which the p-value was less than 0.05 were 
selected to perform classification. Then ranksum tests were 
repeated for the remaining subsets of ECGs terminating 1, 2 
and 3 minutes prior to the AF episodes to select the best set 
of features that distinguish each of them from features 
belonging to the distant set. In total, four separate classifiers 
were trained for each patient/record. We label the time 
between the end of an ECG epoch and the commencement of 
a fibrillatory rhythm, being either 0, 1, 2 or 3 minutes, as the 
prediction horizon. Principal Component Analysis (PCA) 
was performed using the eigenvalues of the feature 
covariance matrix to project the data onto a lower 
dimensional subspace for visualization. The Principal 
Components (PCs) are linear combinations of the features 
and have no physical interpretation by themselves. Feature 
distributions for two different patients for different prediction 

horizons projected onto the first two PCs have been shown in 
Fig. 1 and Fig. 2.  

C. Classification 

We evaluated Support Vector Machines (SVMs), 
Decision Trees and Logistic Regression for classification. We 
selected SVMs due to their superior accuracy and used the 
LibSVM package in Weka [21] with 10-fold cross-validation. 
We calculated sensitivity, specificity and overall accuracy for 
each of the four classifiers trained per patient. Sensitivity 
measures the ratio between the number of correctly predicted 
data points belonging to the pre-AF class and the actual 
number of data points belonging to that class. Specificity is a 
similar measure but is calculated for data points belonging to 
the distant class. The overall accuracy is the percentage of the 
total number of correct predictions.  These values have been 
shown for each patient/record in Table I.  

IV. RESULTS AND DISCUSSION 

Sensitivity is above 85% for almost all patients when the 
SVM performs classification between ECGs that terminate 
right at an AF episode and ECGs belonging to the distant 
class. As shown in Fig. 3, sensitivity tends to drop on average 
as the prediction horizon increases and ECGs further away 
from the episode make up the pre-AF class. The occasional 
small increases in sensitivity, after an initial drop, at 
subsequent stages (corresponding to longer prediction 
horizons) could indicate a slight overfit on the part of the 
SVMs. It is likely that as we move further away from 

 Time Between Termination of ECG Epoch and Next Atrial Fibrillation Episode (Prediction Horizon) 

Patient/

Record 

ID 

Total AF 

Episodes 

0 minutes 1 minute 2 minutes 3 minutes 

Spec. Sens. Acc. Spec. Sens. Acc. Spec. Sens. Acc. Spec. Sens. Acc. 

00 21 0.99 1.00 0.992 0.98 0.647 0.932 0.98 0.643 0.939 0.99 0.75 0.964 

01 35 0.96 0.971 0.963 0.92 0.889 0.913 0.94 0.739 0.902 0.93 0.667 0.89 

10 31 0.98 1.00 0.985 0.97 0.65 0.917 0.94 0.588 0.889 0.97 0.385 0.903 

15 91 0.94 0.989 0.963 0.90 0.727 0.839 0.93 0.714 0.866 1.00 0.00 0.763 

23 37 0.94 0.973 0.949 0.90 0.481 0.811 0.94 0.25 0.806 1.00 0.00 0.877 

25 69 0.88 0.957 0.911 1.00 0.00 0.645 1.00 0.00 0.694 1.00 0.00 0.719 

26 89 0.80 0.966 0.878 0.75 0.739 0.746 0.83 0.627 0.762 0.92 0.429 0.775 

32 32 1.00 1.00 1.00 1.00 0.647 0.949 1.00 0.40 0.945 1.00 0.00 0.917 

33 90 0.97 1.00 0.984 0.84 0.26 0.588 0.79 0.352 0.608 0.74 0.279 0.544 

39 78 0.94 0.987 0.961 0.85 0.403 0.679 0.91 0.212 0.671 0.99 0.091 0.715 

42 24 1.00 0.958 0.992 0.94 0.143 0.842 0.92 0.154 0.832 0.98 0.00 0.899 

45 32 0.93 0.875 0.917 0.92 0.696 0.878 0.96 0.75 0.938 0.96 0.455 0.91 

51 45 0.98 0.956 0.972 0.90 0.561 0.801 0.91 0.432 0.781 0.97 0.441 0.836 

53 47 0.87 0.702 0.816 0.93 0.313 0.78 0.99 0.083 0.815 1.00 0.00 0.82 

62 38 0.98 0.974 0.978 0.90 0.00 0.652 0.91 0.105 0.688 0.94 0.294 0.776 

74 96 0.86 0.927 0.893 0.82 0.50 0.708 0.97 0.025 0.70 1.00 0.00 0.763 

100 89 0.98 1.00 0.989 0.90 0.439 0.732 0.99 0.22 0.766 0.99 0.121 0.774 

101 90 0.98 1.00 0.989 0.88 0.671 0.79 0.93 0.607 0.814 0.95 0.537 0.83 

102 23 1.00 0.957 0.992 0.99 0.00 0.839 - - - - - - 

105 20 0.98 0.80 0.95 1.00 0.00 0.885 0.97 0.20 0.90 0.99 0.20 0.918 

112 146 0.844 0.979 0.938 0.766 0.96 0.884 0.797 0.935 0.872 0.781 0.937 0.858 

115 44 1.00 1.00 1.00 0.98 0.25 0.82 0.97 0.05 0.817 0.96 0.00 0.814 

119 26 0.98 0.885 0.96 0.95 0.632 0.899 0.95 0.632 0.899 0.95 0.143 0.851 

120 21 0.99 0.905 0.975 1.00 0.00 0.833 1.00 0.00 0.847 1.00 0.133 0.887 

121 70 0.84 1.00 0.906 0.87 0.298 0.662 1.00 0.00 0.69 1.00 0.00 0.735 

204 102 0.81 1.00 0.906 0.89 0.754 0.836 0.86 0.63 0.788 0.90 0.366 0.745 

Mean 57.15 0.939 0.952 0.952 0.913 0.448 0.802 0.935 0.374 0.809 0.956 0.249 0.823 



  

fibrillatory rhythms, RR-intervals and ectopic beats do not 
contain much information regarding an impending abnormal 
rhythm. Moreover, each patient experiences a different 
number of AF events during Holter monitoring and 
consequently the data points belonging to the pre-AF class is 
very low for certain records. As the number of distant data 
points in a record will typically be much larger, a class 
imbalance occurs and a statistical classifier will tend to favor 
the majority class to improve accuracy, often resulting in low 
sensitivities. For patient 102, none of the features show a 
separation in medians for certain prediction horizons and 
hence the ranksum tests yield no good features to feed into a 
classifier. Furthermore, features belonging to both classes 
projected onto the first two principal components gradually 
begin to overlap as the prediction horizon increases.   

V. CONCLUSIONS 

Atrial fibrillation is associated with an increased risk of 
ischemic stroke and can potentially go undiagnosed until a 
more serious ailment occurs. The Computers in Cardiology 
Challenge 2001 aimed at sparking interest in predicting the 
occurrence of these sporadic rhythms. In this paper, we 
considered a similar version of the original problem, with 
shorter signals, where we attempted to distinguish between 2-
minute epochs of ECG occurring prior to fibrillatory rhythms 
and those that occur sufficiently further away. Additionally, 
our method is more general as it seeks to classify between all 
the data points belonging to a particular patient at once 
instead of merely deciding which ECG occurs just prior to 
the AF episode when presented with two ECGs at a time.   

Classification accuracy is high for most patients when 
classifying between the distant signals and those that 
terminate just prior to fibrillatory rhythms. However, as the 
distance or prediction horizon increases to a few minutes, 
sensitivity drops significantly. Future work would include 
incorporating p-wave morphologies into the features to 
improve sensitivity and extending the prediction horizon. A 
final product would incorporate this prediction algorithm 
running on an embedded platform such as proposed in [4].  
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Figure 3. Variation of mean and median classification sensitivity with 

prediction horizon for all patients/records 




